On Markov's Inequality on R for the Hermite Weight

X. LI, * R. N. Mohapatra, and R. S. Rodriguez
Department of Mathematics, University of Central Florida, Orlando, Florida 32816
Communicated by Peter B. Borwein

Received June 15, 1991 ; accepted in revised form June 2, 1992

Abstract

The best constant in Markov's inequality on R for the Hermite weight is characterized in terms of the weighted Chebyshev polynomial. i 1993 Academic Press. Inc.

1. Introduction

In recent years there has been considerable research activities in the area of weighted polynomial approximation on R. As an important tool, Markov type inequalities have been established for various weights (cf., e.g., $[3,4,8]$). Markov type inequalities are of the form

$$
\left\|\left(w p_{n}\right)^{\prime}\right\| \leqslant K_{n}(n)\left\|w p_{n}\right\|
$$

where w is a weight on $R, K_{w}(n)$, a quantity depending on w and $n,\|\cdot\|$, the sup norm on R, and $p_{n} \in \mathscr{P}_{n}$, the set of real polynomials of degree at most n. In several interesting cases, the estimates for $K_{w}(n)$ as $n \rightarrow \infty$ have been established (cf. [3, 4, 8]). Obviously, the optimal choice of $K_{w}(n)$ will be

$$
C_{w}(n):=\sup _{\substack{p_{n} \in \neq F_{n} \\ p_{n} \neq 0}} \frac{\left\|\left(w p_{n}\right)^{\prime}\right\|}{\left\|w p_{n}\right\|}
$$

In this form, $C_{w}(n)$ is the extreme value of the following extremal problem:
(P) $\left\{\begin{array}{l}\text { maximize }\left\|\left(w p_{n}\right)^{\prime}\right\| \\ \text { subject to } \\ p_{n} \in \mathscr{P}_{n} \quad \text { and } \quad\left\|w p_{n}\right\| \leqslant 1 .\end{array}\right.$

[^0]If $w(x)=\chi_{[-1,1]}(x)$ (the characteristic function of $[-1,1]$), then by the classical Markov inequality,

$$
C_{x[-1,1]}(n)=\frac{\left\|T_{n}^{\prime}\right\|_{[-1,1]}}{\left\|T_{n}\right\|_{[-1,1]}}=n^{2}
$$

where $T_{n}(x)=x^{n}+\cdots=2^{1 \cdot n} \cos n \arccos x$ (the nth Chebyshev polynomial) and $\|\cdot\|_{[-1,1]}$ is the sup norm on [-1,1]. From this, one would conjecture that under "suitable" conditions on w,

$$
\begin{equation*}
C_{w}(n)=\frac{\left\|\left(w(x) T_{n}(x, w)\right)^{\prime}\right\|}{\left\|w(x) T_{n}(x, w)\right\|} \tag{1}
\end{equation*}
$$

where $T_{n}(x, w)=x^{n}+\cdots \in \mathscr{P}{ }_{n}$ is the weighted Chebyshev polynomial of degree n, i.e., $T_{n}(x, w)$ satisfies

$$
\left\|w(x) T_{n}(x, w)\right\|=\inf _{p \in: भ_{n},}\left\|w(x)\left(x^{n}+p(x)\right)\right\| .
$$

It is known (cf. [7]) that $T_{n}(\cdot, w)$ can be characterized by the maximal equioscillation property.

The purpose of this paper is to show that (1) is true for the important case when $w(x)=w_{2}(x):=e^{x^{2}}$, the Hermite weight. This problem is partially resolved in [6]. Mohapatra et al. showed that $\pm \hat{T}_{n}:=$ $T_{n}\left(\cdot, w_{2}\right) /\left\|w_{2} T\left(\cdot, w_{2}\right)\right\|$ and $\pm \hat{T}_{n-1}$ are the only candidates for the solution of problem (P). However, the task that eliminates $\pm \hat{T}_{n-1}$ as a possible solution is not trivial. By means of a representation theorem in [2] and analysis used in [9] for extremal problems, we have been able to show that the solution of the problem (P) when $w(x)=w_{2}(x)$ is $\pm \hat{T}_{n}$. More precisely, we prove the following:

Theorem 1. With the notation mentioned above,

$$
\begin{equation*}
\max _{\substack{p_{n} \in \not \uplus_{n} n \\ p_{n} \neq 0}} \frac{\left\|\left(w_{2} p_{n}\right)^{\prime}\right\|}{\left\|w_{2} p_{n}\right\|}=\frac{\left\|\left(w_{2} \hat{T}_{n}\right)^{\prime}\right\|}{\left\|w_{2} \hat{T}_{n}\right\|} . \tag{2}
\end{equation*}
$$

It is hoped that the result of this paper will lead to deeper research to establish the optimal value $C_{w}(n)$ in more general settings.

The paper is organized as follows: In Section 2, we prove some preliminary results for general weights; In Section 3, we concentrate on the case of the Hermite weight and prove Theorem 1; In Section 4, we give consequences of Theorem 1 and related remarks.

2. Preliminary Results

Let the weight $w: R \rightarrow(0, \infty)$ be continuously differentiable, $w(x)|x|^{k} \rightarrow 0$ as $|x| \rightarrow \infty(k=0,1,2, \ldots)$, and w^{\prime} / w be continuous and decreasing.

Our proof of Theorem 1 requires a number of lemmas. Before we mention the specific results, we give a sketch of the ideas involved in the proof (cf. [9]).

We need to show that $\pm \hat{T}_{n}$ is the only solution of problem (P). To do so, we first consider a pointwise version of the problem (P) which can be stated (in a form convenient to our later discussion) as (for $y \in R$)

$$
\left(\mathrm{P}_{y}\right) \quad\left\{\begin{array}{l}
\operatorname{minimize}-\left(w p_{n}\right)^{\prime}(y) \\
\text { subject to } \\
p_{n} \in \mathscr{P}_{n} \text { and }\left\|w p_{n}\right\| \leqslant 1 .
\end{array}\right.
$$

By a standard compactness argument, the existence of solution to (P_{y}) can be easily established. Let $N_{n}(y)$ be the negative of the extremal value, i.e.,

$$
\begin{equation*}
N_{n}(y):=-\min _{\substack{p_{n} \in \psi_{n} \\\left\|w p_{n}\right\| \leqslant 1}}\left[-\left(w p_{n}\right)^{\prime}(y)\right] . \tag{3}
\end{equation*}
$$

(We will see that $N_{n}(y)>0$. See the remark after the proof of Lemma 3 in Section 2.) After proving the uniqueness of the solution of the problem (P_{y}), we then determine a closed set $I \subset R$ such that

$$
N_{n}(y)=\left|\left(w \hat{T}_{n}\right)^{\prime}(y)\right|, \quad y \in I
$$

and

$$
N_{n}(y)>\left|\left(w \hat{T}_{n}\right)^{\prime}(y)\right|, \quad y \notin I
$$

Finally, when $w=w_{2}$, we show that

$$
\sup _{y \notin I} N_{n}(y)<\sup _{y \in I} N_{n}(y)=\max _{y \in I} N_{n}(y) .
$$

Thus, for $w=w_{2}, \max _{y \in R} N_{n}(y)=C_{w}(n)$ is attained only by $\pm \hat{T}_{n}\left(\cdot, w_{2}\right)$.
The following result established in [6] is needed in our proof.
Lemma 2 (cf. [6, Lemma 5 and Its Proof]). Suppose $p \in \mathscr{P}_{n}$ has n distinct real zeros. Then there are exactly $(n+1)$ distinct real numbers where (wp)' vanishes. Furthermore, the $(n+1)$ zeros of ($w p)^{\prime}$ and the n zeros of p are interlacing.

We now consider problem (P_{y}). The Corollary on p. 84 in [2] yields that $Q_{n}=Q_{n}(\cdot, y) \in \mathscr{P}_{n}$ is a solution of $\left(\mathrm{P}_{y}\right)$ if and only if there exist
$\lambda_{j}=\lambda_{i}(y) \neq 0$ and $\tau_{j}=\tau_{j}(y), j=1,2, \ldots, r$, for some $r=r(y), 0 \leqslant r \leqslant n+1$, and

$$
\tau_{1}<\tau_{2}<\cdots<\tau_{r}
$$

such that

$$
\begin{align*}
\left(w p_{n}\right)^{\prime}(y) & =\sum_{j=1}^{r} \lambda_{j}\left(w p_{n}\right)\left(\tau_{j}\right), & & \text { for all } p_{n} \in \mathscr{P}_{n}, \\
\operatorname{sgn} \lambda_{j} & =\operatorname{sgn}\left(w Q_{n}\right)\left(\tau_{j}\right), & & \text { and } \tag{4}\\
\left|\left(w Q_{n}\right)\left(\tau_{j}\right)\right| & =\left\|w Q_{n}\right\|=1, & & j=1,2, \ldots, r
\end{align*}
$$

Since Theorem 1 can be established by direct computation for $n=1,2$, as indicated in [6, Remarks], we will assume, from now on, that $n \geqslant 3$.

Lemma 3. Assume Q_{n} is a solution of $\left(P_{r}\right)$, then we have $r \geqslant n$ in (4) and that $\left(w Q_{n}\right)^{\prime}$ has exactly $(n+1)$ distinct zeros.

Proof. We show $r \geqslant n$ by contradiction. Assume $r \leqslant n-1$. Taking $p_{n}(x)=\prod_{j=1}^{r}\left(x-\tau_{j}\right) \in \mathscr{P}_{n}$, in (4) gives $\left(w p_{n}\right)^{\prime}(y)=0$. But using $x p_{n}(x)$ instead of $p_{n}(x)$ in (4) yields $\left(w p_{n}\right)^{\prime}(y) \cdot y+\left(w p_{n}\right)(y)=0$, so $\left(w p_{n}\right)(y)=0$ or $p_{n}(y)=0$, thus $y=\tau_{j}$ for some j and so $\left(w Q_{n}\right)^{\prime}(y)=0$. Then, for any $q_{n} \in \mathscr{P}_{n}$ with $\left\|w q_{n}\right\| \leqslant 1$,

$$
-\left(w q_{n}\right)^{\prime}(y) \geqslant-\left(w Q_{n}\right)^{\prime}(y)=0,
$$

by the extremality of Q_{n}. This would imply that both $w(y)=0$ and $w^{\prime}(y)=0$. But w is a positive weight. Hence we get a contradiction.

Now, note that Q_{n} itself must have at least ($n-1$) sign changes at τ_{j} 's. In fact, if the sequence $Q_{n}\left(\tau_{1}\right), Q_{n}\left(\tau_{2}\right), \ldots, Q_{n}\left(\tau_{r}\right)$ changes sign less than $(n-1)$ times, then we can find a polynomial, say $q_{n-2} \in \mathscr{P}_{n-2}$, having the same sign as Q_{n} at $\tau_{j}, j=1,2, \ldots, r$. Taking $p_{n}(x)=(x-y)^{2} q_{n-2}(x)$ in (4) gives

$$
0=\sum_{j=1}^{r}\left|\hat{\lambda}_{j}\right| \operatorname{sgn} Q_{n}\left(\tau_{j}\right) \cdot w\left(\tau_{j}\right)\left(\tau_{j}-y\right)^{2} q_{n-2}\left(\tau_{j}\right)>0
$$

a contradiction. So Q_{n} has at least ($n-1$) sign changes, and thus has n real distinct zeros. (Recall that Q_{n} is a real polynomial). From this, by Lemma 2, $\left(w Q_{n}\right)^{\prime}$ must have exactly $(n+1)$ distinct zeros.

Remark. From the proof of Lemma 3 (the first paragraph), we see that generally it is true that $N_{n}(y) \neq 0$. But it is immediate from the definition of $N_{n}(y)$ that $N_{n}(y) \geqslant 0$, so $N_{n}(y)>0$ for all $y \in R$.

Lemma 4. There exists a unique solution to problem (P_{y}).
Proof. Since the existence of the solution is mentioned before, we need only to show the uniqueness. Let Q_{n} be a solution. Then we have (4). Assume K_{n} is another solution of (P_{y}). Then

$$
\begin{equation*}
\left(w K_{n}\right)^{\prime}(y)=\left(w Q_{n}\right)^{\prime}(y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|w K_{n}\right\|=1 . \tag{6}
\end{equation*}
$$

Now by (4)

$$
\left(w K_{n}\right)^{\prime}(y)=\sum_{j=1}^{r} \lambda_{j}\left(w K_{n}\right)\left(\tau_{j}\right)
$$

and

$$
\left(w Q_{n}\right)^{\prime}(y)=\sum_{j=1}^{r} \hat{\lambda}_{j}\left(w Q_{n}\right)\left(\tau_{j}\right)=\sum_{j=1}^{r}\left|\hat{\lambda}_{j}\right|
$$

thus, Eq. (5) yields

$$
\sum_{j=1}^{r} \lambda_{j}\left(w K_{n}\right)\left(\tau_{j}\right)=\sum_{j=1}^{r}\left|\lambda_{j}\right| .
$$

In view of (6), this implies

$$
\left(w K_{n}\right)\left(\tau_{j}\right)=\operatorname{sgn} \lambda_{j}, \quad \text { and } \quad\left(w K_{n}\right)^{\prime}\left(\tau_{j}\right)=0, \quad j=1,2, \ldots, r
$$

Then it follows that

$$
\begin{equation*}
w\left(Q_{n}-K_{n}\right)\left(\tau_{j}\right)=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(w\left(Q_{n}-K_{n}\right)\right)^{\prime}\left(\tau_{j}\right)=0 \tag{8}
\end{equation*}
$$

for $j=1,2, \ldots, r$. But by Lemma 3, $n \leqslant r \leqslant n+1$. If $r=n$, then (7) and (8) yield that $w\left(Q_{n}-K_{n}\right)$ has at least $2 n$ zeros. This is impossible unless $Q_{n} \equiv K_{n}$, since otherwise $\boldsymbol{\mu}\left(Q_{n}-K_{n}\right) \quad(\not \equiv 0)$ has n distinct zeros τ_{j} $(j=1,2, \ldots, n)$ from (7), which would imply that ($w\left(Q_{n}-K_{n}\right)$)' has exactly $(n+1)$ zeros and all of them are separated by the τ_{j} 's by Lemma 2. If $r=n+1$, then (7) implies $Q_{n} \equiv K_{n}$.

From now on, we denote the unique solution of $\left(P_{v}\right)$ by $Q_{n}=Q_{n}(\cdot, y)$,
and assume r, λ_{j} 's, and τ_{j} 's are associated with $Q_{n}(\cdot, y)$ as in (4). Let $T_{n}(x, w)$ be the weighted Chebyshev polynomial of degree n and denote

$$
\hat{T}_{n}(x)=\hat{T}_{n}(x, w)=\frac{T_{n}(x, w)}{\left\|w T_{n}(\cdot, w)\right\|}
$$

Lemma 5. If $r=n+1$, then $Q_{n}=\hat{T}_{n}$ or $-\hat{T}_{n}$.
Proof. Each τ_{j} is a zero of $\left(w Q_{n}\right)^{\prime}(j=1,2, \ldots, n+1)$. Thus $\left(w Q_{n}\right)^{\prime}$ has no other zeros by the second half of Lemma 3. So Rolle's theorem implies that we can not have $\left(w Q_{n}\right)\left(\tau_{j}\right)=\left(w Q_{n}\right)\left(\tau_{j+1}\right)\left(= \pm\left\|w Q_{n}\right\|\right)$ for any j, so necessarily, $w Q_{n}$ has alternating signs at the points $\tau_{j}, j=1,2, \ldots, n+1$. Hence $Q_{n}=\hat{T}_{n}$ or $-\hat{T}_{n}$ by the maximal equioscillation property.

Lemma 6. If $r=n$, then $\lambda_{j} \lambda_{j+1}<0, j=1,2, \ldots, n-1$.
Proof. For $j=1,2, \ldots, n-1$, define

$$
p_{j, j+1}(x):=(x-y)^{2} \prod_{\substack{k=1 \\ k \neq j, j+1}}\left(x-\tau_{k}\right) \in \mathscr{P}_{n}
$$

By (4),

$$
\begin{equation*}
0=\lambda_{j}\left(w p_{j, j+1}\right)\left(\tau_{j}\right)+\lambda_{j+1}\left(w p_{j, j+1}\right)\left(\tau_{j+1}\right) \tag{9}
\end{equation*}
$$

Note that $\lambda_{i} \neq 0, y \neq \tau_{i}, w\left(\tau_{i}\right)>0, i=1,2, \ldots, n$, and $p_{j, j+1}$ has no sign changes in $\left(\tau_{j-1}, \tau_{j+2}\right)\left(\tau_{\ldots 1}:=-\infty, \tau_{n+1}:=+\infty\right)$. Now the lemma follows from (9).

Lemma 7. There exist $\alpha_{j}, \beta_{j} \in[-\infty,+\infty], j=1,2, \ldots, n+2$ with $\alpha_{1}=-\infty, \beta_{n+2}=+\infty$, and $\alpha_{j}<\beta_{j}<\alpha_{j+1}<\beta_{j+1}, j=1,2, \ldots, n+1$, such that

$$
r(y)=n+1 \text { if and only if } y \in \bigcup_{j=1}^{n+2}\left(\alpha_{j}, \beta_{j}\right)
$$

Proof. Let us denote the extremal points of $w \hat{T}_{n}$ by $\hat{\tau}_{1}, \hat{\tau}_{2}, \ldots, \hat{\tau}_{n+1}$ with

$$
\hat{\tau}_{1}<\hat{\tau}_{2}<\cdots<\hat{\tau}_{n+1}
$$

Define the resolvent of \hat{T}_{n} by (cf. [9])

$$
\begin{equation*}
R(x):=\prod_{j=1}^{n+1}\left(x-\hat{\tau}_{j}\right) \tag{10}
\end{equation*}
$$

and set

$$
\begin{equation*}
R_{k}(x):=\frac{R(x)}{\left(x-\hat{\tau}_{k}\right)}, \quad k=1,2, \ldots, n+1 \tag{11}
\end{equation*}
$$

Assume $i<j$. Note that

$$
R_{i}(x)-R_{j}(x)=\frac{\hat{\tau}_{i}-\hat{t}_{j}}{x-\hat{\tau}_{i}} R_{j}(x)
$$

So at those points x where $\left(w R_{j}\right)^{\prime}(x)=0$, we have

$$
\begin{equation*}
\frac{\left(w R_{i}\right)^{\prime}(x)}{\left(w R_{j}\right)(x)}=\frac{\hat{\tau}_{j}-\hat{\tau}_{i}}{\left(x-\hat{\tau}_{i}\right)^{2}}>0 . \tag{12}
\end{equation*}
$$

Since, from Lemma 2 , $\left(w R_{k}\right)^{\prime}(k=1,2, \ldots, n+1)$ has exactly $(n+1)$ distinct zeros, equation (12) implies that the zeros of ($\left.w R_{i}\right)^{\prime}$ and that of $\left(w R_{j}\right)^{\prime}$ are interlacing. If we denote the zeros of $\left(w R_{k}\right)^{\prime}$ by

$$
\zeta_{1}^{(k)}<\zeta_{2}^{(k)}<\cdots<\zeta_{n+1}^{(k)}
$$

for $k=1,2, \ldots, n+1$, then

$$
\begin{aligned}
-\infty=: & \zeta_{0}^{(1)}<\zeta_{1}^{n+1}<\cdots<\zeta_{1}^{(2)}<\zeta_{1}^{(1)}<\zeta_{2}^{(n+1)}<\cdots \\
& <\zeta_{n}^{(1)}<\zeta_{n+1}^{(n+1)}<\zeta_{n+1}^{(n)}<\cdots<\zeta_{n+1}^{(1)}<\zeta_{n+2}^{(n+1)}:=+\infty
\end{aligned}
$$

From this we claim:
$\left(w R_{k}\right)^{\prime}(y), k=1,2, \ldots, n+1$, have the same sign if and
only if $y \in \bigcup_{j=0}^{n+1}\left(\zeta_{j}^{(1)}, \zeta_{j+1}^{(n+1)}\right)$.

In fact, from Lemma 2 and the fact that $\left(w R_{k}\right)(x)>0($ as $x \rightarrow+\infty)$, we know $\left(w R_{k}\right)\left(\zeta_{n+1}^{(k)}\right)>0$ and $\left(w R_{k}\right)$ has no zero in $\left(\zeta_{n+1}^{(k)},+\infty\right)$. So $\operatorname{sgn}\left(w R_{k}\right)^{\prime}(y)=-1$ for $y>\zeta_{n+1}^{(k)}$. Since $\left(w R_{k}\right)^{\prime}$ only changes its sign at $\zeta_{j}^{(k)}$ $(j=1,2, \ldots, n+1)$, it then follows that $\operatorname{sgn}\left(w R_{k}\right)^{\prime}(y)=(-1)^{n-j}$ for all $k=1,2, \ldots, n+1$, if and only if $y \in\left(\zeta_{j}^{(1)}, \zeta_{j+1}^{(n+1)}\right),(j=0,1, \ldots, n=1)$. This proves the claim (13).

Define $\alpha_{j}:=\zeta_{j-1}^{(1)}$, and $\beta_{j}:=\zeta_{j}^{(n+1)}, j=1,2, \ldots, n+2$. If $y \in \bigcup_{j=1}^{n+2}\left(\alpha_{j}, \beta_{j}\right)$, then by using Lagrange's interpolation formula associated with points $\hat{\tau}_{j}$, $j=1,2, \ldots, n+1$, we can verify that (4) is satisfied with $r(y)=n+1, \tau_{j}=\hat{\tau}_{j}$, $Q_{n}=\left(\operatorname{sgn}\left(w \hat{T}_{n}\right)^{\prime}(y)\right) \hat{T}_{n}$ and $\lambda_{j}=\hat{\lambda}_{j}$ with

$$
\begin{equation*}
\hat{\lambda}_{j}:=\frac{(-1)^{n+1-j}}{w\left(\hat{\tau}_{j}\right)\left|R_{j}\left(\hat{\tau}_{j}\right)\right|}\left(w R_{j}\right)^{\prime}(y) \operatorname{sgn}\left(w \hat{T}_{n}\right)^{\prime}(y), \quad j=1,2, \ldots, n+1 . \tag{14}
\end{equation*}
$$

Hence \hat{T}_{n} or $-\hat{T}_{n}$ is the solution of $\left(\mathrm{P}_{y}\right)$.

Conversely, if for $y \in R$ we have $r(y)=n+1$, then by Lemma 5, $Q_{n}=\hat{T}_{n}$ or $-\hat{T}_{n}$. So $\tau_{j}=\hat{\tau}_{j}$. In (4), sgn $\lambda_{j}=\operatorname{sgn} Q_{n}\left(\hat{\tau}_{j}\right)$ and Q_{n} has the equioscillation property, so

$$
\begin{equation*}
\lambda_{j} \lambda_{j+1}<0, \quad j=1,2, \ldots, n \tag{15}
\end{equation*}
$$

Substituting $R_{j}(j=1,2, \ldots, n+1)$ for $p_{\hat{a}^{n}}$ in (4), we can solve for λ_{j}. The formula for λ_{j} is the same as that for $\hat{\lambda}_{j}$ in (14). But this time (15) holds, thus $\left(w R_{j}\right)^{\prime}(y), j=1,2, \ldots, n+1$, must be of the same sign, therefore $y \in \bigcup_{j=1}^{n+2}\left(\alpha_{j}, \beta_{j}\right)$ by claim (13).

Lemma 8. Let α_{j} 's and β_{j} 's be defined as in Lemma 7. We have $Q_{n}=\hat{T}_{n}$ or $-\hat{T}_{n}$ at $y=\alpha_{k+1}$ or $\beta_{k}, k=1,2, \ldots, n+1$.

Proof. According to $y=\dot{\alpha}_{k+1}$ or $y=\beta_{k}$, we have $\hat{\lambda}_{1}=0$ or $\hat{\lambda}_{n+1}=0$ in (14), respectively. In any of the two cases mentioned above, (4) is always satisfied for $Q_{n}=\left(\operatorname{sgn}\left(w \hat{T}_{n}\right)^{\prime}(y)\right) \hat{T}_{n}$ by using $\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{n}$ or $\hat{\lambda}_{2}, \ldots, \hat{\lambda}_{n+1}$ of (14) as $\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{n}$ in (4). Consequently, $r(y)=n$ and $Q_{n}=\hat{T}_{n}$ or $-\hat{T}_{n}$.

Let $\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}$ be the extremal points of $w \hat{T}_{n-1}$, and

$$
\begin{equation*}
R^{*}(x):=\prod_{j=1}^{n}\left(x-\sigma_{j}\right) \tag{16}
\end{equation*}
$$

Let $\xi_{1}<\xi_{2}<\cdots<\xi_{n+1}$ be all the zeros of $\left(w R^{*}\right)^{\prime}$.
Lemma 9. For $j=1,2, \ldots, n+1$, there holds

$$
\beta_{j}<\xi_{j}<\alpha_{j+1}
$$

Proof. Let $e=e^{+}$or e^{-}where $e^{ \pm}(x):=\left(w \hat{T}_{n}\right)(x) \pm\left(w \hat{T}_{n-1}\right)(x)$, then

$$
(-1)^{n+1 \cdots j} e\left(\hat{\tau}_{j}\right) \geqslant 0, \quad j=1,2, \ldots, n+1,
$$

so e has at least one zero in each interval $\left[\hat{\tau}_{j}, \hat{\tau}_{j+1}\right], j=1,2, \ldots, n$. If we count $\hat{\tau}_{j}$ twice when $e\left(\hat{t}_{j}\right)=0$, then e has at least n zeros. But, from its form, e can have at most n zeros (if we count z twice when $e(z)=0$ and e does not change its sign at z). So e has exactly n zeros with our method of zero counting. Thus each interval $\left[\hat{\tau}_{j}, \hat{\tau}_{j+1}\right](j=1,2, \ldots, n)$ contains exactly one point at which e vanishes. We now claim that each interval $\left[\hat{\tau}_{j}, \hat{\tau}_{j+1}\right]$ ($j=1,2, \ldots, n$) contains exactly one of σ_{j} 's. In fact, if σ_{k} and σ_{k+1} are both contained in $\left[\hat{\tau}_{j}, \hat{\tau}_{j+1}\right]$, then either e^{+}or e^{-}will have at least two distinct zeros in $\left[\hat{\tau}_{j}, \hat{\tau}_{j+1}\right]$, a contradiction. Hence

$$
\hat{\tau}_{1}<\sigma_{1}<\hat{\tau}_{2}<\cdots<\hat{\tau}_{n}<\sigma_{n}<\hat{\tau}_{n+1} .
$$

So the zeros of $w R^{*}$ and those of $w R_{1}$ (or $w R_{n+1}$) are interlacing. With the help of Lagrange's interpolation formula, it then follows that the zeros of $\left(w R^{*}\right)^{\prime}$ and that of $\left(w R_{1}\right)^{\prime}$ (resp. $\left.\left(w R_{n+1}\right)^{\prime}\right)$ are also interlacing. Therefore

$$
\xi_{j}<\zeta_{j}^{(1)}\left(\text { resp. } \zeta_{j}^{(n+1)}<\xi_{j}\right), \quad j=1,2, \ldots, n+1,
$$

which yields the lemma.
Lemma 10. We have $Q_{n}(\cdot, y)=\hat{T}_{n-1}$ or $-\hat{T}_{n-1}$ if and only if $y=\xi_{j}$ for some $j=1,2, \ldots, n+1$.

Proof. If $Q_{n}(\cdot, y)= \pm \hat{T}_{n-1}$, then $\tau_{j} \in\left\{\sigma_{k} ; k=1,2, \ldots, n\right\}$ in (4). Taking $p_{n}=R^{*}$ in (4) gives $\left(w R^{*}\right)^{\prime}(y)=0$, so $y=\zeta_{j}$ for some j.

Conversely, if $y=\xi_{j}$, then $\left(w R^{*}\right)^{\prime}(y)=0$. For any $p_{n} \in \mathscr{P}_{n}$, let a_{n} be the coefficient of x^{n} in p_{n}, then Lagrange's interpolation formula will give us

$$
p_{n}(x)-a_{n} R^{*}(x)=\sum_{j=1}^{n} \frac{\left(w p_{n}\right)\left(\sigma_{j}\right)}{w\left(\sigma_{j}\right) R^{* \prime}\left(\sigma_{j}\right)} \frac{R^{*}(x)}{\left(x-\sigma_{j}\right)} .
$$

Multiplying both sides of the above equation by $w(x)$ and then differentiating the resulting products with respect to x and then evaluating at $x=y$ will yield

$$
\left(w p_{n}\right)^{\prime}(y)=\sum_{j=1}^{n} \frac{1}{w\left(\sigma_{j}\right) R^{*}\left(\sigma_{j}\right)}\left(-\frac{\left(w R^{*}\right)(y)}{\left(y-\sigma_{j}\right)^{2}}\right)\left(w p_{n}\right)\left(\sigma_{j}\right) .
$$

We can see that with $Q_{n}=\left(\operatorname{sgn}\left(w \hat{T}_{n-1}\right)^{\prime}(y)\right) \hat{T}_{n}$, (4) will be satisfied if $r=n, \tau_{j}=\sigma_{j}$ and

$$
\lambda_{j}=\frac{(-1)^{n-j}}{w\left(\sigma_{j}\right)\left|R^{*^{\prime}}\left(\sigma_{j}\right)\right|}\left(-\frac{\left(w R^{*}\right)(y)}{\left(y-\sigma_{j}\right)^{2}}\right) \operatorname{sgn}\left(w \hat{T}_{n-1}\right)^{\prime}(y), \quad j=1,2, \ldots, n .
$$

This completes the proof of the lemma.

Lemma 11. Let $Q_{n}(x, y)=\sum_{j=0}^{n} a_{j}(y) x^{j}$ (the unique solution of $\left(\mathrm{P}_{y}\right)$), then $a_{j}(y)$ is a continuous function of $y(j=0,1, \ldots, n$.)

Proof. Let $y_{0} \in R$ and $y^{(m)} \rightarrow y_{0}($ as $m \rightarrow \infty)$. Since

$$
\left\|w(x) \sum_{j=0}^{n} a_{j}\left(y^{(m)}\right) x^{j}\right\| \leqslant 1,
$$

there exists a number $M>0$ such that, for $j=0,1, \ldots, n$,

$$
\left|a_{j}\left(y^{(m)}\right)\right| \leqslant M, \quad m=1,2, \ldots .
$$

Let A be any infinite subset of $\{1,2,3, \ldots\}$. Then $\left\{\left(a_{0}\left(y^{(k)}\right), \ldots, a_{n}\left(y^{(k)}\right)\right)\right\}_{k \in A}$ will have a limit point, say $\left(a_{0}^{*}, \ldots, a_{n}^{*}\right)$. Let $\left\{n_{k}\right\}_{k=1}^{x}$ be a subsequence of Λ such that

$$
\lim _{k \rightarrow \infty} a_{j}\left(y^{\left(n_{k}\right)}\right)=a_{j}^{*}, \quad j=0,1, \ldots, n .
$$

Then

$$
\lim _{k \rightarrow \infty} \sum_{j=0}^{n} a_{j}\left(y^{\left(m_{k}\right)}\right) x^{j}=\sum_{j=0}^{n} a_{j}^{*} x^{j}
$$

locally uniformly in R. Let $Q^{*}(x):=\sum_{j=0}^{n} a_{j}^{*} x^{\prime}$. Note that for any $p_{n} \in \mathscr{P}_{n}$ with $\left\|w p_{n}\right\| \leqslant 1$,

$$
\left.\frac{\partial}{\partial x}\left(w(x) Q_{n}\left(x, y^{\left(n_{k}\right)}\right)\right)\right|_{x=y^{\left(n_{k}\right)}} \geqslant\left(w p_{n}\right)^{\prime}\left(y^{\left(n_{k}\right)}\right)
$$

So, by letting $k \rightarrow \infty$,

$$
\left(w Q^{*}\right)^{\prime}\left(y_{0}\right) \geqslant\left(w p_{n}\right)^{\prime}\left(y_{0}\right)
$$

With the notation $\|f\|_{[a, b]}:=\sup _{x \in[a, b]}|f(x)|$ and the fact that there exist finite real numbers a_{n} and b_{n} such that

$$
\left\|w p_{n}\right\|_{\left[u_{n}, b_{n}\right]}=\left\|w p_{n}\right\|
$$

for all $p_{n} \in \mathscr{P}_{n}$ (cf. [7]), we find

$$
\left\|w Q^{*}\right\|=\left\|w Q^{*}\right\|_{\left[a_{n}, b_{n}\right]}=\lim _{k \rightarrow \infty} \| w(x) Q_{n}\left(x, y^{\left(n_{k}\right)} \|_{\left[a_{n}, b_{n}\right]}=1 .\right.
$$

Hence Q^{*} is a solution of $\left(\mathrm{P}_{y_{0}}\right)$. By the uniqueness, $Q^{*}(x)=Q_{n}\left(x, y_{0}\right)$ and it follows that the limit $\lim _{y \rightarrow y_{0}} a_{j}(y)$ exists and equals $a_{j}\left(y_{0}\right)$ $(j=0,1, \ldots, n)$.

3. Proof of Theorem 1

Let $N_{n}(y), R(x)$, and $R_{k}(x)$ have the same meaning as in Section 2 (cf. formulas (3), (10), and (11)). Note that

$$
\left(w R_{k}\right)^{\prime}(x)=-\frac{(w R)(x)}{\left(x-\hat{\tau}_{k}\right)^{2}} \quad \text { if } \quad(w R)^{\prime}(x)=0
$$

Thus, if we use $\theta_{0}<\theta_{1}<\cdots<\theta_{n+1}$ to denote all the zeros of $(w R)^{\prime}$, then the zeros of $(w R)^{\prime}$ and that of $\left(w R_{1}\right)^{\prime}$ (or $\left.\left(w R_{n+1}\right)^{\prime}\right)$ are interlacing, so

$$
x_{j+1}<\theta_{j}<\beta_{j+1}, \quad j=0,1, \ldots, n+1,
$$

where $\alpha_{j+1}=\zeta_{j}^{(1)}$ and $\beta_{j+1}=\zeta_{j+1}^{(n+1)}, j=0,1, \ldots, n+1$, are defined as in Lemma 7.

Similarly, we can also verify the following:

$$
\begin{equation*}
\beta_{j}<\hat{\tau}_{j}<\alpha_{j+1}, \quad j=1,2, \ldots, n+1 . \tag{17}
\end{equation*}
$$

From this point on, we shall take $w(x)=w_{2}(x)=e^{-r^{2}}$.
We need the following additional lemmas for the proof of Theorem 1.

Lemma 12. For $j=1,2, \ldots, n+2$, in each interval $\left(\alpha_{j}, \beta_{j}\right)$, function $N_{n}(y)$ has a unique local maximum point at θ_{j-1}.

Proof. Let $y \in\left(\alpha_{j}, \beta_{j}\right)$. From Lemma 7 and its proof, $Q_{n}=$ $\left(\operatorname{sgn}\left(w_{2} \hat{T}_{n}\right)^{\prime}(y)\right) \hat{T}_{n}$. So,

$$
-\left.\frac{\partial}{\partial x}\left(w_{2}(x) Q_{n}(x, y)\right)\right|_{x=y}=\frac{2 \operatorname{sgn}\left(w_{2}\left(\hat{T}_{n}\right)^{\prime}(y)\right.}{\left\|w_{2} T_{n}\left(\cdot, w_{2}\right)\right\|}\left(w_{2} R\right)(y),
$$

by using the definition of R and comparing the leading coefficients on both sides. But the left hand side equals $-N_{n}(y)<0$ (cf. the remark after the proof of Lemma 3). So the right hand side does not change sign for $y \in\left(\alpha_{j}, \beta_{j}\right)$. Thus $\left(w_{2} \hat{T}_{n}\right)^{\prime}(y)$ has the same sign for $y \in\left(\alpha_{j}, \beta_{j}\right)$, so $Q_{n}(x, y) \equiv \hat{T}_{n}(x)$ or $Q_{n}(x, y) \equiv-\hat{T}_{n}(x)$ for such y (Q_{n} is independent of y in this case!). Assume $Q_{n} \equiv \hat{T}_{n}$. Then

$$
\begin{equation*}
N_{n}(y)=\left(w_{2} \hat{T}_{n}\right)^{\prime}(y)=-\frac{2\left(w_{2} R\right)(y)}{\left\|w_{2} T_{n}\left(\cdot, w_{2}\right)\right\|}>0 . \tag{18}
\end{equation*}
$$

So $w_{2} R(y)<0$ for $y \in\left(\alpha_{j}, \beta_{j}\right)$. It then follows easily that $w_{2} R$ has a unique minimum point at θ_{j-1}, so $N_{n}(y)$ has a unique maximum point at θ_{j-1}. The case when $Q_{n} \equiv-\hat{T}_{n}$ can be handled similarly.

Next, we examine the behavior of $N_{n}(y)$ when $y \in\left(\beta_{i}, x_{j+1}\right)$, $j=1,2, \ldots, n+1$. Recall that ξ_{j} 's are all the zeros of $\left(w_{2} R^{*}\right)^{\prime}$ with R^{*} defined in (16).

Lemma 13. The function $N_{n}(y)$ is decreasing in $\left(\beta_{j}, \xi_{j}\right)$ and increasing in $\left(\xi_{j}, \alpha_{j+1}\right), j=1,2, \ldots, n+1$.

Proof. Let $y \in\left(\beta_{i}, \alpha_{i+1}\right)$. By Lemmas 5, 6, and 7, $r(y)=n, \lambda_{i} \lambda_{i+1}<0$ ($i=1,2, \ldots, n-1$) in (4), and

$$
n-1 \leqslant \partial Q_{n}:=\text { the degree of } Q_{n}(\cdot, y) \leqslant n
$$

If $\partial Q_{n}=n-1$, then $Q_{n}=\hat{T}_{n-1}$ or $-\hat{T}_{n-1}$ by the maximal equioscillation property; and this happens only when $y=\xi_{j}$ by Lemma 10.

Now assume $\partial Q_{n}=n$, then there exist

$$
t_{1}<t_{2}<\cdots<t_{n} \quad \text { and } \quad t
$$

(the zeros of $\left.\left(w_{2} Q_{n}\right)^{\prime}\right)$ such that the following relations hold:

$$
\left(w_{2} Q_{n}\right)\left(t_{i}\right)=(-1)^{i} \varepsilon(\varepsilon= \pm 1), \quad i=1,2, \ldots, n
$$

and

$$
\left.\frac{\partial}{\partial x}\left(w_{2}(x) Q_{n}(x, y)\right)\right|_{x=t}=0
$$

Set $\hat{R}(x):=\prod_{i=1}^{n}\left(x-t_{i}\right)$, and let a_{n} be the leading coefficient of Q_{n}. Then $a_{n} \neq 0$ and

$$
\frac{\partial}{\partial x}\left(w_{2}(x) Q_{n}(x, y)\right)=-2 a_{n} w_{2}(x) \hat{R}(x)(x-t)
$$

So

$$
\left(w_{2} \hat{R}\right)^{\prime}(x)=-\frac{\left(\partial^{2} / \partial x^{2}\right)\left(w_{2}(x) Q_{n}(x, y)\right)}{2 a_{n}(x-t)}+\frac{(\partial / \partial x)\left(w_{2}(x) Q_{n}(x, y)\right)}{2 a_{n}(x-t)^{2}}
$$

But by (4), $\left(w_{2} \hat{R}\right)^{\prime}(y)=0$ since $\hat{R}\left(t_{i}\right)=0, i=1,2, \ldots, n$, thus

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial x^{2}}\left(w_{2} Q_{n}(x, y)\right)\right|_{x=y}=\frac{\left.(\partial / \partial x)\left(w_{2}(x) Q_{n}(x, y)\right)\right|_{x=y}}{y-t} \neq 0 \tag{19}
\end{equation*}
$$

for $y \in\left(\beta_{j}, \alpha_{j+1}\right) \backslash\left\{\xi_{j}\right\}, j=1,2, \ldots, n+1$. Therefore, y is not a local extremum point of $(\partial / \partial x)\left(w_{2}(x) Q_{n}(x, y)\right)$ as a function of x.

By Lemma 8, $Q_{n}\left(x, \beta_{j}\right)=\operatorname{sgn}\left(w_{2} \hat{T}_{n}\right)^{\prime}\left(\beta_{j}\right) \hat{T}_{n}(x)$, so

$$
\begin{aligned}
N_{n}\left(\beta_{j}\right) & =\operatorname{sgn}\left(w_{2} \hat{T}_{n}\right)^{\prime}\left(\beta_{j}\right)\left(w_{2} \hat{T}_{n}\right)^{\prime}(\beta) \\
& =-\frac{2 \operatorname{sgn}\left(w_{2} \hat{T}_{n}\right)^{\prime}\left(\beta_{j}\right)\left(w_{2} R\right)\left(\beta_{j}\right)}{\left\|w_{2} T_{n}\left(\cdot, w_{2}\right)\right\|}>0,
\end{aligned}
$$

where the second equality depends on (18). Now by (17) and the fact the $w_{2} R$ is monotone between θ_{j-1} and θ_{j}, we conclude that

$$
\left(w_{2} R\right)\left(\beta_{j}\right)\left(w_{2} R\right)^{\prime}\left(\beta_{j}\right)<0,
$$

so

$$
\operatorname{sgn}\left(w_{2} \hat{T}_{n}\right)^{\prime}\left(\beta_{j}\right)\left(w_{2} R\right)^{\prime}\left(\beta_{j}\right)>0 .
$$

Hence

$$
\begin{aligned}
& -\left.\frac{\partial^{2}}{\partial x^{2}}\left(w_{2}(x) Q_{n}\left(x, \beta_{j}\right)\right)\right|_{x=\beta_{i}} \\
& \quad=\frac{2 \operatorname{sgn}\left(w_{2} \hat{T}_{n}\right)^{\prime}\left(\beta_{j}\right)\left(w_{2} R\right)^{\prime}\left(\beta_{j}\right)}{\left\|w_{2} T_{n}\left(\cdot, w_{2}\right)\right\|}>0
\end{aligned}
$$

Now, by Lemma 11, for $y>\beta_{j}$ and y close enough to β_{j},

$$
\begin{equation*}
-\left.\frac{\partial^{2}}{\partial x^{2}}\left(w_{2}(x) Q_{n}(x, y)\right)\right|_{x=y}>0 \tag{20}
\end{equation*}
$$

But in view of (19), this implies that (20) holds for all $y \in\left(\beta_{j}, \xi_{j}\right)$. Now the continuity of $-\left(\partial^{2} / \partial x^{2}\right)\left(w_{2}(x) Q_{n}(x, y)\right)$ in (x, y) implies that, for every $y \in\left(\beta_{j}, \xi_{j}\right)$, there is $\delta:=\delta(y)$ such that

$$
-\left.\frac{\partial^{2}}{\partial x^{2}}\left(w_{2}(x) Q_{n}\left(x, y^{*}\right)\right)\right|_{x=x^{*}}>0
$$

whenever $\left|x^{*}-y\right|<\delta$ and $\left|y^{*}-y\right|<\delta$. Thus, if $y_{1}<y_{2}$ and $y_{1}, y_{2} \in$ $(y-\delta, y+\delta)$,

$$
\begin{aligned}
N_{n}\left(y_{2}\right) & =\left.\frac{\partial}{\partial x}\left(w_{2}(x) Q_{n}\left(x, y_{2}\right)\right)\right|_{x=y_{2}} \\
& <\left.\frac{\partial}{\partial x}\left(w_{2}(x) Q_{n}\left(x, y_{2}\right)\right)\right|_{x=y_{1}} \\
& \leqslant N_{n}\left(y_{1}\right) .
\end{aligned}
$$

Hence N_{n} is decreasing in $(y-\delta, y+\delta)$. Consequently, N_{n} is decreasing in $\left(\beta_{j}, \xi_{j}\right), j=1,2, \ldots, n+1$.

Similarly, we can show that N_{n} is increasing in $\left(\xi_{j}, \beta_{j+1}\right)$, $j=1,2, \ldots, n+1$.

Proof of Theorem 1. Combining Lemmas 12 and 13, we have

$$
N_{n}(y)<\left\|\left(w_{2} \hat{T}_{n}\right)^{\prime}\right\| \quad \text { for } \quad x \in \bigcup_{j=1}^{n+2}\left(\alpha_{j}, \beta_{j}\right)
$$

Together with Lemmas 5 and 7, it then follows that

$$
\left\|\left(w_{2} p_{n}\right)^{\prime}\right\|<\left\|\left(w_{2} \hat{T}_{n}\right)^{\prime}\right\|\left\|w_{2} p_{n}\right\|,
$$

for all $p_{n} \in \mathscr{P}_{n}$ unless

$$
\frac{p_{n}}{\left\|w_{2} p_{n}\right\|}= \pm \hat{T}_{n}
$$

This completes our proof of Theorem 1.

4. Remarks

(I) By a linear transformation, one can easily prove

Corollary 14. For real numbers $a>0, b$, and c, equality (1) is true for the weight

$$
w_{\mathrm{H}}(x)=e^{\left(a x^{2}+b x+c\right)}
$$

(II) From [1], we know that

$$
A n^{1 / 2} \leqslant C_{w_{2}}(n) \leqslant B n^{1 / 2},
$$

where $A>0$ and $B>0$ are absolute constants. So using Theorem 1 we get the following estimate of $\left(w_{2} \hat{T}_{n}\right)^{\prime}$:

Corollary 15. There are absolute constants $A>0$ and $B>0$ such that

$$
A n^{1 / 2} \leqslant\left\|\left(w_{2} \hat{T}_{n}\right)^{\prime}\right\| \leqslant B n^{1 / 2} .
$$

The asymptotics of $\hat{T}_{n}\left(z, w_{2}\right)$ in $C \backslash[-1,1]$ is obtained in [5] (more general weights are considered there). Hence, in view of Corollary 15, it is desirable to ask: what is the asymptotics of $\left\|\left(w_{2} \hat{T}_{n}\right)^{\prime}\right\|$?
(III) If $\left(w_{2} p_{n}\right)^{\prime}$ is replaced by $w_{2} p_{n}^{\prime}$ in (2), then it is not clear if Chebyshev polynomial $T_{n}\left(\cdot, w_{2}\right)$ will still give us the best constant. Our method of proof of Theorem 1 cannot be directly applied to solve this problem.

References

1. G. Freld, On two polynomial inequalities I, Acta Math. Acad. Sci. Hungar. 22 (1971), 109-116.
2. R. Holmes, "A Course on Optimization and Best Approximation," Lecture Notes in Math., Vol. 257. Springer-Verlag, Berlin, 1972.
3. A. L. Levin and D. S. Lubinsky, L, Markov-Bernstein inequalities for Freud weights, SIAM J. Math. Anal. 21 (1990), 1065-1082.
4. D. S. Lubinsky and T. Z. Mthembu, L_{ρ} Markov-Bernstein inequalities for Erdös weights, J. Approx. Theory 63 (1991), 255-266.
5. D. S. Lubinsky and E. B. Saff, "Strong Asymptotics for Extremal Polynomials Associated with Weights on R," Lecture Notes in Math., Vol. 1305, Springer-Verlag, Berlin, 1988.
6. R. N. Mohapatra, P. J. O’Hara, and R. S. Rodriguez, Extremal polynomials for weighted Markov inequalities, J. Approx. Theory 51 (1987), 267-273.
7. H. N. Mharskar and E. B. Saff, Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
8. P. Nevai and V. Totik, Weighted polynomial inequalities, Constr. Approx. 2 (1986), 113-127.
9. E. V. Voronovskaja, "The Functional Method and Its Applications," Amer. Math. Soc., Providence, RI, 1970.

[^0]: * This author is grateful to Professor E. B. Saff for his constant encouragement.

