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1. INTRODUCTION

In recent years there has been considerable research activities in the area
of weighted polynomial approximation on R. As an important tool,
Markov type inequalities have been established for various weights
(cf, e.g., [3, 4, 8]). Markov type inequalities are of the form

Howp, )l < K, (n) [wp,|l,

where w is a weight on R, K, (n), a quantity depending on w and n, ||-[|,
the sup norm on R, and p, € #,, the set of real polynomials of degree at
most n. In several interesting cases, the estimates for X, (n) as n — co have
been established (cf. [3, 4, 8]). Obviously, the optimal choice of K, (n)
will be

wp,)
C.(n) 1= sup 1PVl
Pn€ #y ”Wp,,”
pn 0

In this form, C,.(n) is the extreme value of the following extremal problem:

maximize | (wp,)’
(P) < subject to
poe# and  Iupl<l.

* This author is grateful to Professor E. B. Saff for his constant encouragement.
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If w(x)=yx; | ,;(x) (the characteristic function of [ —1, 1]), then by the
classical Markov inequality,

1T -
nil I.l]znz

C, (n)= »
SR ”Tn”[f—l.l]
where T, (x)=x"+ --- =2" "cosnarccos x (the nth Chebyshev polyno-
mial) and ||-}; ., is the sup norm on [—1,1]. From this, one would

conjecture that under “suitable” conditions on w,

[ (w(x) T, (x, w))'ll
C.(n)= ) (1)
w(x) T, (x, w
where T, (x,w)=x"+ -.- €%, is the weighted Chebyshev polynomial of

degree n, ie., T,(x, w) satisfies

Iw(x) T, (x, will = inf he(x)(x" + p(x))ll.

PEFn |

It is known (cf. [7]) that T,(-, w) can be characterized by the maximal
equioscillation property.

The purpose of this paper is to show that (1) is true for the important
case when w(x)=w,(x):=e ¥ the Hermite weight. This problem is
partially resolved in [6]. Mohapatra et al. showed that + T,:=
T,(-, w,)/Ilw, T(-, w,)ll and + T, , are the only candidates for the solution
of problem (P). However, the task that eliminates +7,_, as a possible
solution is not trivial. By means of a representation theorem in [2] and
analysis used in [9] for extremal problems, we have been able to show that
the solution of the problem (P) when w(x)=w,(x)is + T,. More precisely,
we prove the following:

THEOREM 1. With the notation mentioned above,

102 | _ 0% T o)

pet IW2p,l Iw, 7,0

It is hoped that the result of this paper will lead to deeper research to
establish the optimal value C, (n) in more general settings.

The paper is organized as follows: In Section2, we prove some
preliminary results for general weights; In Section 3, we concentrate on the
case of the Hermite weight and prove Theorem 1; In Section 4, we give
consequences of Theorem 1 and related remarks.
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2. PRELIMINARY RESULTS

Let the weight w: R — (0, o0 ) be continuously differentiable, w(x){x|* — 0
as |x| - (k=0,1,2,..), and w'/w be continuous and decreasing.

Our proof of Theorem 1 requires a number of lemmas. Before we men-
tion the specific results, we give a sketch of the ideas involved in the proof
(cf. [91). i

We need to show that + 7, is the only solution of problem (P). To do
so, we first consider a pointwise version of the problem (P) which can be
stated (in a form convenient to our later discussion) as (for y € R)

minimize — (wp, ) (¥)
(P,) subject to
p.€% and  |wp,lI<1.

By a standard compactness argument, the existence of solution to (P,) can
be easily established. Let N,(y) be the negative of the extremal value, ie.,

N,(y):=— ;nin [—0wp,) ()] (3)
epall € 1

(We will see that N, (y)> 0. See the remark after the proof of Lemma 3 in
Section 2.) After proving the uniqueness of the solution of the problem
(P,), we then determine a closed set /< R such that

N, (»)=1wT,y (¥)l, yel,
and

N.(»)>1wT,) (0], yél
Finally, when w=w,, we show that

sup N, (y)<sup N,(y)= max N.(»).

yel vel ye

Thus, for w=w,, max, g N,(y)= C,(n) is attained only by + T,(-, w,).
The following result established in [6] is needed in our proof.

LemMa 2 (cf. [6, Lemma 5 and Its Proof]). Suppose pe @, has n dis-
tinct real zeros. Then there are exactly (n+ 1) distinct real numbers where
(wp)' vanishes. Furthermore, the (n+ 1) zeros of (wp)' and the n zeros of p
are interlacing.

We now consider problem (P,). The Corollary on p. 84 in [2] yields
that Q,=Q,(:, y)e, is a solution of (P,) if and only if there exist



118 LI, MOHAPATRA, AND RODRIGUEZ

Ai=4;(y)#0 and t,=1,(y), j=1,2,..,r, for some r=r(y), 0<r<n+1,
and

T, <T,< - <1

r

such that

(WP,,), (}’)= Z j'j(”"pn)(":j)’ fOI' a” pne%;

i1
sgn '1/' =sgn(wQ,)(1,), and (4)
|(wQ.)(x)) = W@, =1, i=12,..r

Since Theorem 1 can be established by direct computation for n =1, 2, as
indicated in [6, Remarks], we will assume, from now on, that n > 3.

LEMMA 3. Assume Q, is a solution of (P,), then we have r > n in (4) and
that (wQ,) has exactly (n+ 1) distinct zeros.

Proof. We show r>=n by contradiction. Assume r<n—1. Taking
p.(x)=T1;_, (x—1,)€Z, , in (4) gives (wp,)’ (y)=0. But using xp,(x)
instead of p,(x) in (4) yields (wp,) (»)-y+ (wp,)(¥)=0, so (wp,)(y)=0
or p,{y)=0, thus y =1, for some j and so (wQ,) (¥)=0. Then, for any
4. € %, with |wg,| <1,

—(wg,) ()= —(wQ,) (y)=0,

by the extremality of Q,. This would imply that both w(y)=0 and
w'(y)=0. But w is a positive weight. Hence we get a contradiction.

Now, note that Q, itsell must have at least (n — 1) sign changes at t,’s.
In fact, if the sequence Q,(t,), Q.(15), .., Q,(1,) changes sign less than
{(n—1) times, then we can find a polynomial, say ¢,_,€%,_,, having the
same sign as 0, at 7;, j=1,2, .., r. Taking p,(x)=(x— y)*q, _,(x) in (4)
gives

0= Z IAA'j| sgn Qn(Tj) : W(TJ‘)(TJ'_ y)z Gn— z(Tj) >0,

i=1

a contradiction. So Q, has at least (n — 1) sign changes, and thus has » real
distinct zeros. (Recall that Q, is a real polynomial). From this, by
Lemma 2, {(wQ,) must have exactly (n+ 1) distinct zeros. |}

Remark. From the proof of Lemma 3 (the first paragraph), we see that
generally it is true that N, (y)s0. But it is immediate from the definition
of N,(y) that N,(»)=20,s0 N,(y)>0for all yeR.
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LEMMA 4. There exists a unique solution to problem (P ).

Proof. Since the existence of the solution is mentioned before, we need
only to show the uniqueness. Let Q, be a solution. Then we have (4).
Assume K, is another solution of (P,). Then

(wK,) (y)=(wQ,) (¥) (5)
and
Wk, Ii = 1. (6)
Now by (4)
WK,Y ()= ¥, 400K, )(x)
and

wQ,) ()= Y. 4L,(wQ,)1,)= 3 |4,

i=1 =1

thus, Eq. (5) yields

AWK )t) =) 14l
i=1 j =
In view of (6), this implies
(wK,)(t,)=sgn i, and (wK,) (1;)=0, Jj=12 . r
Then it follows that
w(Q,— K, )t;)=0 (7

and
w(@,—K,)) (r;)=0 (8)

for j=1,2,..,r. But by Lemma 3, n<r<n+ 1. If r=n, then (7) and (8)
yield that w(Q,— K,) has at least 2n zeros. This is impossible unless
0,=K,, since otherwise w(Q,—K,) (#0) has » distinct zeros 1,
(j=1,2,..,n)from (7), which would imply that (w(Q,— K,,))’" has exactly
(n+ 1) zeros and all of them are separated by the 7,’s by Lemma 2. If
r=n+1, then (7) implies 0,=K,. 1|

From now on, we denote the unique solution of (P,) by Q,=0.,(-, y),
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and assume r, 4/s, and 7s are associated with @, (-, y) as in (4). Let
T,(x, w) be the welghted Chebyshev polynomial of degree »n and denote

T,(x, w)

Lbo=T = T

LEMMA S. If r=n+1, then Q,=T, or —T,.

Proof. Each 1, is a zero of (wQ,) (j=1,2,...,n+1). Thus (w@,) has
no other zeros by the second half of Lemma 3. So Rolle’s theorem implies
that we can not have (wQ,)(1;) = (wQ )1,, )= xlwQ,l) for any j, so
necessarily, wQ, has alternatmg signs at the points 7, j=1,2,..,n+ L
Hence Q, =T, or —T,, by the maximal equioscillation property. |

LeMMA 6. If r=n, then A;4;,, <0, j=1,2, ., n—1
Proof. For j=1,2,..,n—1, define
piax)=(x—p? [] (—-t)e2.
k=1

k#jj+1
By (4),
0=’1/(ij‘/+|)(r;‘)+'{/‘+1("'17/'.,'+|)(Tj+1)- )
Note that A;#0, y ;Er,, w(t;)>0, i=1,2,..,n, and p,;, , has no sign

changes in (7, ,1,,,) (t.,:=—, 1,,,:=+) Now the lemma
follows from (9). |

LeMMA 7. There exist o, fe[—o0, +x], j=1,2,.,n+2 with
oy =—00, f,,,=+ow, and a, <P, <o, <P, \, j=1,2,.,n+1, such
that

n+2

r(yy=n+1ifand only if ye U (o, B;)-

Jj=1

Proof. Let us denote the extremal points of wT, by 7, ©,, .., T, With
fl<f2< o <fn+l‘

Define the resolvent of T, by (cf. [9])

R(x): ﬁ (10)
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and set
R(x)

R¥) =0

k=1,2, .. n+1 (11)

Assume i < j. Note that

R,(x)— Ry(x) = "L R, (x),
: X — 1,
So at those points x where (wR;) (x)=0, we have
(wR) (x)  T,—7,
(WR)(x) ~ (x—1,)°

>0. (12)

Since, from Lemma 2, (wR,) (k=1,2, .., n+ 1) has exactly (n+ 1) distinct
zeros, equation (12) implies that the zeros of (wR;)’ and that of (wR,) are
interlacing. If we denote the zeros of (wR,) by

7 (k) (k) vy (k)
gl <CZ <L—!n+]’

fork=1,2,..,n+1, then
_Oc_gz)l)<vn+l< <‘>(7)< “)<C‘2’7+I)<"'
<Clll<"ln+l)<é’i'nll< <Cf,lln<Cf."fz”- + oo,
From this we claim:

(WR,)Y (), k=1,2,..,n+1, have the same sign if and
only if ye U/Zg (¢ “’ C}'jf,“. (13)

In fact, from Lemma 2 and the fact that (wR.)(x)>0 (as x - +o0), we
know (wR (%) )>0 and (wR,) has no zero in ({¥),, +00). So
sgn(wR,) (y)= —1for y>{*) . Since (wR,) only changes its sign at {*’
(j=1,2,..,n+1), it then follows that sgn(wR,) (y)=(~1)""/ for all
k=1,2,.,n+1, if and only if ye (", ("), (j=0,1,.,n=1). This
proves the claim (13).
Define o, :={{",, and g, :={"*", j=1,2,.,n+2 If ye Ui} (a,, B)).
then by using Lagrange’s interpolation formula associated with points 7,
=1,2,.,n + 1, we can verify that (4) is satisfied with r(y)=n+1, 1,=1,

Q (sgn(wT,) (y)) T, and )v—i with

. _1n+lfj
s (=)

j: m (WRJ-)' (y)ysgn(wT,) (»), j=12,.,n+1. (14)

Hence T, or — T, is the solution of (P.).
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Conversely, if for ye R we have r(y)=n+1, then by Lemma 5, 0,=T,
—T,. So 7;=1;. In (4), sgn 4, =sgn Q,(,;) and Q, has the equioscilla-
tion property, so

A <0, j=1,2,..n (15)

Substituting R, (j=1,2,..,n+1) for p, in (4), we can solve for 4,. The
formula for 4, is the same as that for 4; in (14). But this time (15) holds,
thus (wR)) (), j=1,2,..,n+1, must be of the same sign, therefore
yeU!! (a;, B,) by claim (13). |

LEMMA 8. Let o/s and ij be defned as in Lemma 7. We have Q,=T,
or —T, at)—ockﬂorﬂh =12,.,n+1

Proof. According to y=ua,,, or y=f,, we have ,5 =0 or ZH ,=01in
(14), respectively. In any of the two cases mentioned above (4) is always
satisfied for Q, = (sgn(wT,) (y)) T, by using l,,.. /L,, or ),,.. iy Of

A
(14) as 4i,, .., 4, in (4). Consequently, r(y)=nand Q,=T, or —T,. 1

Let 6, <0, < --- <o, be the extremal points of w7, ,, and
R*(x): H (x—0,). (16)

Let &, <&, < -+ <&, be all the zeros of (wR*)'.

LEMMA 9. For j=1,2,..,n+ 1, there holds

B<&i<a;,

Proof. Let e=e* or e~ where e*(x):= (w7 )(x)+ (wT, _,)(x), then
(=D e(d) 20,  j=1,2,.,n+1,

so e has at least one zero in each interval [7,7,,,], j=1,2,..,n If we
count £, twice when e(7;) =0, then e has at Ieast n zeros. But, from its form,
e can have at most n zeros (if we count z twice when e(z)=0 and e does
not change its sign at z). So e has exactly n zeros with our method of zero
counting. Thus each interval [, 7,,,] (j= 1, 2, .., n) contains exactly one
point at which e vanishes. We now claim that each interval [7;,7;,,]
(/=1,2, .., n) contains exactly one of ¢;s. In fact, if 6, and 5, , , are both
containcd in [£,, ©,,1], then either e* or e~ will have at least two distinct
zeros in (7, 7, ,], a contradiction. Hence

f,<0,<t,< - <1,<0,<T,,,.
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So the zeros of wR* and those of wR; (or wR,, ) are interlacing. With the
help of Lagrange’s interpolation formula, it then follows that the zeros of
(wR*) and that of (wR,)' (resp. (wR, . )') are also interlacing. Therefore

&<V (resp. L' V< &), =12, ..n+1,
which yields the lemma. |}

LEmMMA 10. We have Q, (-, y)=T, ,or —T, | if and only if y = &, for
some j=1,2, . .n+ L

Proof. Q,(-,y)=+T, ,,thent,e{o,; k=12, .,n}in (4). Taking
p.=R* in (4) gives (WR*) (y)=0, so y =, for some .

Conversely, if y=¢;, then (wR*) (y)=0. For any p,e#,, let a, be the
coefficient of x" in p,, then Lagrange’s interpolation formula will give us

oo (pe) R
P = R ) = Y e o) (= o)

/=1

Multiplying both sides of the above equation by w(x) and then differen-
tiating the resulting products with respect to x and then evaluating at x=y
will yield

' . n 1 —(WR*)()")
(wp,) (})—j; w(av,-)R*(U;)< (y—a))

> (”'p;:)(q;)~

We can see that with Q, = (sgn(wT, ,) (y) T, ,, (4) will be satisfied if
r=n, t,=0; and

—1y R*)(y .
L (—ﬂj_}fjﬁ)sgnwﬂ D). j=12..n

7 wle,) IR (0))]

This completes the proof of the lemma. |

LemMma 11. Let Q,(x, y)=z;‘:0aj(y)xj (the unique solution of (P,)),
then a;(y) is a continuous function of y (j=0,1, .., n.)

Proof. Let yoe R and y"™ — y, (as m — o). Since

<17

W(x) 3 a () 5
i=0

there exists a number M >0 such that, for j=0, 1, ..., n,

la,(y™I<M, m=12,...
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Let /A be any infinite subset of {1, 2, 3, ...}. Then {(ao(3*"), «s @, ("N} i c 4
will have a limit point, say (af, ..., a¥). Let {n,} _, be a subsequence of A
such that

lim a,(y")=a}, j=0,1,..,.n

k— x

Then

n

n
im Z al_(),lllk))xl: Z a;txj’
k-0 j=0

locally uniformly in R. Let Q*(x):=%7_,afx’. Note that for any p,e #,
with [jwp,[ <1,

= 06() @ (5, YDy > () (37,
X

So, by letting & — 00,
(w@*) (yo) = (wp,) (yo)

With the notation || f||;,.+) :=SUpP,cras|f(x)| and the fact that there exist
finite real numbers a, and b, such that

lepn'l [an.bal = ”“"pn”

for all p, e 2, (cf. [7]), we find

@ = W0 gy = Jim () Q6 Dl gy = 1.

Hence Q* is a solution of (P, ). By the uniqueness, Q*(x)=Q,(x, y,)
and it follows that the limit lim,_, a,(y) exists and equals a;(y,)
(j=0,1,.,n) 1

3. PROOF OF THEOREM 1

Let N,(y), R(x), and R,(x) have the same meaning as in Section 2
(cf. formulas (3), (10), and (11)). Note that

(wR)(x)

(R (¥)= — (=5

if (wR) (x)=0.
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Thus, if we use 8,<0, < --- <8,,, to denote all the zeros of (wR)’, then
the zeros of (wR) and that of (wR )’ (or (wR, ,,)') are interlacing, so

4 <0,<B ., Jj=0,1,.,n+1,

— 7 __rin+1)
where o;,\={}" and B, ={\"

Lemma 7.
Similarly, we can also verify the following:

, j=0,1,..,n+ 1, are defined as in

B,<t <o, j=1,2..n+1 (17)

From this point on, we shall take w(x)=w,(x)=e¢ *.
We need the following additional lemmas for the proof of Theorem 1.

LeEMMA 12, For j=1,2,..,n+2, in each interval («;, f;), function N,(y)
has a unique local maximum point ar 0, _ .

Proof. Let ye(a;,f;,). From Lemma7 and its proof, Q,=
(sgn(w,T,)" (y)) T,. So,

2 , _ 2sgn(wy(T,)' ()
_5; ("'Z(X) Qn(x’ b )) Ix= y sz T,,( . "'Z)H

(W, R)(»),

by using the definition of R and comparing the leading coefficients on both
sides. But the left hand side equals —N,(y) <0 (cf. the remark after the
proof of Lemma 3). So the right hand side does not change sign for
yela;, B)). ‘Thus (woT.) (3) ha§ the same sign for ye(a, f;), so
Q.(x,y)=T,(x) or Q,(x, y)= —T,(x) for such y (@, is independent of y

-

in this case!). Assume Q,=T,. Then

- 2(wa R)(y)

N,.(»=w,T,) (y)= ———————>0. (18)
D= = = T ol

So w,R(y) <0 for ye(a;, ;). It then follows easily that w, R has a unique

minimum point at 8, ,, so N,(y) has a unique maximum point at 8,_,.

The case when Q,= — T, can be handled similarly. J

Next, we examine the behavior of N,(y) when ye(B,%,,),
j=1,2,..,n+1. Recall that {’s are all the zeros of (w,R*)" with R*
defined in (16).

Lemma 13.  The function N,(y) is decreasing in (B,, {,) and increasing in
(ija aj+ 1), j"—‘ 1, 2, e B+ 1.
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Proof. Let ye(B,,%,,,). By Lemmas 5,6, and 7, r(y)=n, 4,4,,,<0
(i=1,2,..,n—1)in (4), and

n—1<0Q, :=the degree of @, (-, y)<n

IféQ,=n—1,then Q,=7, ,or —T, , by the maximal equioscillation
property; and this happens only when p=¢; by Lemma 10.
Now assume J0Q, = n, then there exist

t<ty< .- <t, and t

(the zeros of (w,(,)") such that the following relations hold:

(w20,)1)=(—1)¢e (e=£1), i=012, .,n

and
ég— (M’YZ(x) Qn(x7 .V))|x: = O
X

Set R(x):=TT1"_, (x—1,), and let g, be the leading coefficient of Q,. Then
a,#0 and

0 -
77 (92(x) @, (%, y)) = —2a,w, (x) R(x)(x —1).

So

BV oy _(62/&’62)('”2(-’6)Qn(x, y))  (8/0x)(wy(x) Q,(x, ¥))
(w2 RY (x) = 2a, (x—1) + 2a,(x—1) '

But by (4), (w,R) (y)=0 since R(1,)=0, i=1,2, .., n, thus

L PO Lo L AL PRI
x : y—t

for ye(B;, o,  N\{}, j=1,2,..,n+ 1. Therefore, y is not a local
extremum point of (3/0x)(w,(x) Q,(x, y}) as a function of x.

By Lemma 8, Q,(x, §,) =sgn(w, T} (8) T, (x), so

N, (B)=sgn(w, T,) (B)w.T,) (B)

_ _2se0n 1) (B)0RIB)
”wZTn('awZ)” ’
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where the second equality depends on (18). Now by (17) and the fact the
w, R is monotone between 6, | and 8;, we conclude that

(w2 R)(B,)(w,R) (B,) <0,
SO
sgn(w, T,) (B)(w2RY (8,)>0.

Hence

62
- 5;2- (wZ (x) Qn (xa ﬂ/)) '.\'= A

_ 2sgn(w, T,) (B,)(w,RY (B,)

>0.
w2 T, (-, wa)ll

Now, by Lemma 11, for y> f; and y close enough to §,,

2

é
— 7 () Qu(x ¥, >0, (20)

But in view of (19), this implies that (20) holds for all y e (8;, {;). Now the
continuity of —(8%/dx?)(w,(x)Q,(x, ¥)) in (x, y) implies that, for every
ve(B,, &), there is 8 :=5(y) such that

62
— 25 (0:(%) Q,(x y*) | _ (>0

whenever |x*— y|<é and |y*—y|<éd. Thus, if y, <y, and y,, y,€
(y—39, y+39),

0
No(y2) == w2(x) @, (% y2)) -y

0
<2 2 (¥) Qul 2D oy
x
<N, ().
Hence N, is decreasing in (y — 8, y + 8). Consequently, N, is decreasing in
(ﬂja éj)! j= 1, 2, o B+ 1.

Similarly, we can show that N, is increasing in (&, 8;,,),
J=12,..n+1 |}

640,75,2-2
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Proof of Theorem 1. Combining Lemmas 12 and 13, we have

n+2

N,(») < Iw, T Y for xe ) (2, 8)

=1

Together with Lemmas 5 and 7, it then follows that

10022 I < 102 T) 1 w2 pll,

for all p, e #, unless

pn

=+T,.
lwapal

This completes our proof of Theorem 1. |

4. REMARKS
(I} By a linear transformation, one can easily prove

COROLLARY l4. For real numbers a> 0, b, and ¢, equality (1) is true for
the weight

WH ('\.) — (ax2+ by + «')'

(I1) From [1], we know that

2

An'?<C,,(n)< Bn'?,

where A >0 and B> 0 are absolute constants. So using Theorem 1 we get
the following estimate of (w,7,)":

COROLLARY 5. There are absolute constants A >0 and B >0 such that

An' 2L N(wo T, < B,

The asymptotics of T,(z, w,) in C\[—1, 1] is obtained in [5] (more
general weights are considered there). Hence, in view of Corollary 15, it is
desirable to ask: what is the asymptotics of [[(w,T,)|?

(II1) If (w,p,) is replaced by w,p, in (2), then it is not clear if
Chebyshev polynomial 7,(-, w,) will still give us the best constant. Our
method of proof of Theorem 1 cannot be directly applied to solve this
problem.
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