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The best constant in Markov's inequality on R for the Hermite weight is charac-
terized in terms of the weighted Chebyshev polynomial. " 1993 Academic Press, Inc,

1. INTRODUCTION

In recent years there has been considerable research activities in the area
of weighted polynomial approximation on R. As an important tool,
Markov type inequalities have been established for various weights
(cf., e.g., [3,4,8]). Markov type inequalities are of the form

where W is a weight on R, K.(n), a quantity depending on wand n, 11·11,

the sup norm on R, and P" E flJ", the set of real polynomials of degree at
most n. In several interesting cases, the estimates for K. (n) as n -+ r:JJ have
been established (cf. [3,4,8]). Obviously, the optimal choice of Kw(n)
will be

C ( )
._ II(wp,,)'11

w n .- sup .
P.E'''. Ilwp,,11
p" ¥ 0

In this form, C. (n) is the extreme value of the following extremal problem:

{

maXi"mize II(wp"n
(P) subject to

P" E flJ" and IIwp,,11 ~ 1.
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If W(X) = X[ I, 1] (X) (the characteristic function of [ - I, 1]), then by the
classical Markov inequality,

where T,,(x) = x" + ... =2 1
" cos n arccos x (the nth Chebyshev polyno

mial) and II ·11 r .. 1. I] is the sup norm on [- I, I]. From this, one would
conjecture that under "suitable" conditions on 11',

lI(w(x) T,,(x, w))'IJ
C,,(n)= ,

Ilw(x) T,,(x, 11')11
( I )

where T" (x, 11') = x" + ... E ~, IS the weighted Chebyshev polynomial of
degree n, i.e., T" (x, 11') satisfies

Ilw(x) T,,(x, 11')11 = inf IIw(x)(x" + p(x))II.
I'E·{t1n I

It is known (cf. [7]) that T,,(·, w) can be characterized by the maximal
equioscillation property.

The purpose of this paper is to show that (1) is true for the important
case when J1'(x) = 11'2 (x) := e x

2
, the Hermite weight. This problem is

partially resolved in [6]. Mohapatra et al. showed that ± T" :=
T,,(·, 11'2)/1111'2 T(·, 11'2)11 and ± T". I are the only candidates for the solution
of problem (P). However, the task that eliminates ± T,,_ 1 as a possible
solution is not trivial. By means of a representation theorem in [2] and
analysis used in [9] for extremal problems, we have been able to show that
the solution of the problem (P) when w(x) = 11'2 (x) is ± T". More precisely,
we prove the following:

THEOREM I. With the notation mentioned above,

(2 )

It is hoped that the result of this paper will lead to deeper research to
establish the optimal value C,,(n) in more general settings.

The paper is organized as follows: In Section 2, we prove some
preliminary results for general weights; In Section 3, we concentrate on the
case of the Hermite weight and prove Theorem 1; In Section 4, we give
consequences of Theorem 1 and related remarks.
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2. PRELIMINARY RESULTS
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Let the weight w: R -+ (0,00) be continuously differentiable, w(x)ixl k -+ 0
as Ixl-+ 00 (k =0,1,2, ... ), and w'lw be continuous and decreasing.

Our proof of Theorem 1 requires a number of lemmas. Before we men
tion the specific results, we give a sketch of the ideas involved in the proof
(cf. [9]).

We need to show that ± Tn is the only solution of problem (P). To do
so, we first consider a pointwise version of the problem (P) which can be
stated (in a form convenient to our later discussion) as (for yE R)

{

minimize - (wPnJ' (y)

(P..) subject to

PnE&:, and II"Pnll ~ 1.

By a standard compactness argument, the existence of solution to (PI) can
be easily established. Let Nn(y) be the negative of the extremal value, i.e.,

Nn(y) := - min [- (wPn)' (yl].
PnE ;~1l

11"'Pn 11 <:; 1

(3)

(We will see that N n (y) > O. See the remark after the proof of Lemma 3 in
Section 2.) After proving the uniqueness of the solution of the problem
(P,,), we then determine a closed set Ie R such that

and

Finally, when w = w2 , we show that

sup Nnev) < sup Nn(y) = max NnLv) .
.1'';1 yEI yE I

Thus, for w = w2 , max VE R Nn(y) = C ... (n) is attained only by ± Tn (', w2 ).

The following result established in [6] is needed in our proof.

LEMMA 2 (cf. [6, Lemma 5 and I ts Proof]). Suppose P E,o/ln has n dis
tinct real zeros. Then there are exactly (n + 1) distinct real numbers where
(wp J' vanishes. Furthermore, the (n + 1) zeros of (wp)' and the n zeros of P
are interlacing.

We now consider problem (Py ). The Corollary on p.84 in [2] yields
that Qn=Qn(-,y)E&:, is a solution of (P,.) if and only if there exist
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A/=A)Y)toO and T;=Tj(Y), j= 1,2, ... , r, for some r=r(y), O~r~n+ I,
and

such that

(1I'Pn)' (y) = I A./(WPII)(T/),
/~l

sgn Aj = sgn(wQ n)( rJ,

I(WQII)(T/)I = IlwQnl1 = 1,

for all Pn E f!l'",

and (4)

j = 1, 2, ... , r.

Since Theorem 1 can be established by direct computation for n = I, 2, as
indicated in [6, Remarks], we will assume, from now on, that n;?; 3.

LEMMA 3. Assume QII is a solution of (Pl')' then we have r;?;n in (4) and
that (wQn)' has exactly (n + 1) distinct zeros.

Proof We show r;?; n by contradiction. Assume r ~ n - 1. Taking
Pn(X)=n;~1 (X-Tj)Ey:, I in (4) gives (WPII)' (y)=O. But using xPn(x)
instead ofPII(x) in (4) yields (HPII)' (y),y+(wPn)(Y)=O, so (WPII)(Y) =0
or Pn(Y) = 0, thus Y = T/ for some j and so (wQn)' (y) = O. Then, for any
qn E Y:, with Ilwqllll ~ 1,

by the extremality of Q /I' This would imply that both 11'( Y) = 0 and
w'(y) = O. But II' is a positive weight. Hence we get a contradiction.

Now, note that Qn itself must have at least (n - 1) sign changes at r/s.
In fact, if the sequence Qn(TIl, Qn(T 2), ..., Qn(T r ) changes sign less than
(n-l) times, then we can find a polynomial, say qn-2E[JJn~2' having the
same sign as Q" at T/, j = 1,2, ..., r. Taking Pn(x) = (x - y)2 qn _2(X) in (4)
gives

r

0= I lA/I sgn Qn(TJ· W(TJ(Tj - y)2 qn- 2(TJ > 0,
)=1

a contradiction. So Q n has at least (n - 1) sign changes, and thus has n real
distinct zeros. (Recall that Qn is a real polynomial). From this, by
Lemma 2, (wQ n)' must have exactly (n + 1) distinct zeros. I

Remark. From the proof of Lemma 3 (the first paragraph), we see that
generally it is true that Nn(y) to O. But it is immediate from the definition
of Nn(y) that Nn(y);?;O, so Nn(y»O for all YER.
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LEMMA 4. There exists a unique solution to problem (Pr ).

Proof Since the existence of the solution is mentioned before, we need
only to show the uniqueness. Let Qn be a solution. Then we have (4).
Assume K n is another solution of (Pr.). Then

(5)

and

(6)

Now by (4)

r

(»'Kn)' (y) = L A.j(wKn)(r i )
i~ I

and

r r

(wQn)' (y) = L Aj(WQn)(rj ) = L IA.),
j~1 i~1

thus, Eq. (5) yields

r r

L Aj(wKn)(rJ = L I).J
j~1 i~1

In view of (6), this implies

(wKn)(rj ) = sgn )'j'

Then it follows that

and j= 1,2, ..., r.

and

(7)

(8)

for j= 1,2, ..., r. But by Lemma 3, n~r~n+ 1. If r=n, then (7) and (8)
yield that 11'( Qn - Kn) has at least 2n zeros. This is impossible unless
Qn=-Kn, since otherwise w(Qn-Kn) (~O) has n distinct zeros r j

U= 1,2, ..., n) from (7), which would imply that (w(Qn - Kn))' has exactly
(n + 1) zeros and all of them are separated by the r/s by Lemma 2. If
r = n + 1, then (7) implies Qn =- Kn· I

From now on, we denote the unique solution of (PrJ by Qn = Q,,(., y),
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and assume r, Il, s, and r/s are associated with Q" ( ., y) as in (4). Let
TJy, 11') be the weighted Chebyshev polynomial of degree n and denote

A A Tn (x, 11')
Til (x) = Til (x, 11') = IlwT

n
(., 11')11'

LEMMA 5. Ifr=n+l, then Q"=T,, or -T".

Proof Each r j is a zero of (wQ,.)' (j = 1,2, ... , n + I). Thus (wQnY has
no other zeros by the second half of Lemma 3. So Rolle's theorem implies
that we can not have (wQ,,)(r) = (II'Qn)(r i + 1)( = ± IlwQ"II) for any j, so
necessarily, wQ n has alternating signs at the points r j , j = 1, 2, ..., n + I.
Hence Qn = T" or - T" by the maximal equioscillation property. I

LEMMA 6. If r = n, then A;ltj+' < 0, j = 1, 2, ... , n - 1.

Proof. For j= I, 2, ..., n-I, define

pi.j+dx ):=(X-y)2 TI (x-rdEY'n·
k ~ 1

k#j.j+ ,

By (4),

0= Aj ( v.'Pj. j + 1)( r i ) + Aj + , (WPj. i + 1)(r j + 1)' (9)

Note that ).; =1= 0, y =1= r;, 11'( r J > 0, i = 1, 2, ..., n, and Pi.j + I has no sign
changes in (rj I' rj+ 2) (r 1:= - 00, rll+ 1 := + (0). Now the lemma
follows from (9). I

LEMMA 7. There exist IXj , {3j E [ - 00, + 00 J, j = 1, 2, , n + 2 with
IX,=-oo, {3"+2=+00, and ':1.,< {3j< ':1.j + , <{3j+" j=I,2, ,n+l, such
that

n+2

r(y)=n+1 ifandonlyifYE U (IXj ,{3j)'
j~ 1

Proof. Let us denote the extremal points of wT" by i" i 2' ... , in + 1 with

Define the resolvent of Tn by (cf. [9J)

n+ 1

R(x) := TI (X - i),
j~ ,

(to)



MARKOV'S INEQUALITY ON R

and set
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k = 1, 2, ... , 11 + 1. (II)

Assume i < j. Note that

f·-f
Rj(x) - Ri(x) = -'-A' R,(X).

X-T;

So at those points x where (wRy (x)=O, we have

(wR;)' (x)

(wRi)(x)
(12)

j = 1, 2, ..., n + l. ( 14 )

Since, from Lemma 2, (wRd' (k = 1, 2, ..., 11 + I) has exactly (11 + I) distinct
zeros, equation (12) implies that the zeros of (wRY and that of (wR,)' are
interlacing. If we denote the zeros of (wRd' by

for k = I, 2, ..., n + I, then

_cx::=:(~1)«':+1< ... <(\2)<(\')<(in + ' )< ...

< (~II < '~'++II) < C,nl 1 < ... < (~,lll < (~'++211 := + 00.

From this we claim:

(wRd' (y), k = 1, 2, ... , 11 + I, have the same sign if and
only ifyEU n + ' (r(ll rl n +lI) (13)/ ~ 0 ... , , ... , + 1 •

In fact, from Lemma 2 and the fact that (wRd(x»O (as x--. +CX::), we
know (wRd((~kll»O and (l1-Rd' has no zero in ((~kl" +cx::). So
sgn(wRd' (y)= -1 for y>,~kll' Since (wRd' only changes its sign at (ik)
U= I, 2, , 11 + 1), it then follows that sgn( wR k )' (y) = ( - I )n - i for all
k=I,2, ,n+l, if and only if YE((i'I"j'~~'», U=O,I, ...,l1=I). This
proves the claim (13).

D fi ._r(1) d {1.-rl"+l) '-12 +2 If U"+2( {1)eme (Xi'-'>j-I' an i'-'>j ,J-, , ...,n . yE j~l (Xi' j'
then by using Lagrange's interpolation formula associated with points f i ,

j= 1, 2, ..., n + 1, we can verify that (4) is satisfied with r(y) = n + I, Tj = f j ,

Q" = (sgn(wt,,)' (y» tIl and Xi = Xj with

• (-It+ 1 - i •

Xi := w(f
j
) IRi(fj)1 (wRi )' (y) sgn(wT,,)' (y),

Hence tIl or - tIl is the solution of (PJ.
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Conversely, if for y E R we have r(y) = n + I, then by Lemma 5, Qn = Tn
or -Til' SO Lj=ij . In (4), sgnAj=sgnQII(i;) and Qn has the equioscilla
tion property, so

AjAj+, < 0, j= I, 2, ..., n. (15)

Substituting Rj (j = I, 2, ..., n + I) for !!..n in (4), we can solve for )'j' The
formula for Aj is the same as that for Aj in (14). But this time (15) holds,
thus (wRj )' (y), j= 1,2, ..., n+ I, must be of the same sign, therefore
yE U;'~} (IX;, 13,) by claim (13). I

LEMMA 8. Let IX/S and 13/s be defined as in Lemma 7. We have QII = Til
or - Tn at y = IXk + , or 13k> k = 1,2, ..., n + I.

Proof According to y = Q: k +, or y = 13k> we have 2, = 0 or ;:11+' = 0 in
(14), respectively. In any of the two cases mentioned above, (4) is always
satisfied for Q,,=(sgn(wTII )'(y))Til by using ;:I""'~II or 22 , ...,XII +1 of
(14) as AI, ... , All in (4). Consequently, r(y) = nand QII = Til or - Tn. I

Let (J L< (J 2 < ... < (J II be the extremal points of v,'Tn _ I' and

n

R*(x) := TI (x - (JJ
j~'

Let ~I < ~2 < ... < ~II+' be all the zeros of (wR*)'.

LEMMA 9. For j = I, 2, ..., n + I, there hold~

f3j < ~j < IXj+ I'

(16 )

Proof Let e=e+ or e- where e±(x) := (wTII)(x)± (wTII_d(x), then

j = I, 2, ..., n + I,

so e has at least one zero in each interval [ij' i j + I], j= 1,2, ..., n. If we
count i j twice when e( ij) = 0, then e has at least n zeros. But, from its form,
e can have at most n zeros (if we count z twice when e(z) = 0 and e does
not change its sign at z). So e has exactly n zeros with our method of zero
counting. Thus each interval [ij , i; + I] (j = I, 2, ..., n) contains exactly one
point at which e vanishes. We now claim that each interval [ij' i j + ,]

(j = I, 2, ..., n) contains exactly one of (J/s. In fact, if (J k and (J k + 1 are both
contained in [ij , i j + ,], then either e + or e - will have at least two distinct
zeros in [if' i j + I], a contradiction. Hence
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So the zeros of wR* and those of wR, (or wRn+ I) are interlacing. With the
help of Lagrange's interpolation formula, it then follows that the zeros of
(wR*)' and that of (IvR d' (resp. (wRn+ ,)') are also interlacing. Therefore

~j<,YI (resp. 't+I)<~),

which yields the lemma. I

j = I, 2, ... , n + I,

LEMMA 10. WehaveQ,,(.,y)=T,,_1 or -T,,_I ifandonIYifY=¢jfor
some j = I, 2, ..., n + 1.

Proof If Q" ( " y) = ± T,,_ I' then !j E {ak; k = I, 2, ..., n} in (4). Taking
P" = R* in (4) gives (wR*)' (y) =0, so y = ¢j for some j.

Conversely, if Y = ~j' then (wR*)' Cv) = 0. For any Pn E #", let an be the
coefficient of x n in Pn' then Lagrange's interpolation formula will give us

( ) _ R*() = ~ (wp,,)(aj ) R*(x)
Pn X a" xL" *' _.

i~ I \1, (a) R (a,) (x aj )

Multiplying both sides of the above equation by w(x) and then differen
tiating the resulting products with respect to x and then evaluating at x = Y
will yield

" I (WR*)(Y))
(wPn)' (y) =j~1 w(aj ) R*(aJ - (y _ aj )2 (wPn)(a;).

We can see that with Qn = (sgn(wT,,_ d' (y)) T" I' (4) will be satisfied if
r = n, !j = a, and

(-I)"-j ((WR*)(Y)) •
).= - sgn(wT" d'(y),

I w(aj ) IR*'(aj)1 (y - aY
This completes the proof of the lemma. I

j= I, 2, ... , n.

LEMMA 11. Let Q,,(x, Y)=L;'~oajCv)xj (the unique solution of (P,.)),
then aj (y) is a continuous function of y (j = 0, I, ... , n.)

Proof Let YoE Rand y(m) ~ Yo (as m ~ 00). Since

there exists a number M>°such that, for j = 0, 1, ..., n,

m= 1,2, ....
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Let A be any infinite subset of { I, 2, 3, ... }. Then {(ao(y(k»), ..., a" (y<k I))} kE ,1

will have a limit point, say (alf, ..., al~)' Let {nd:~ I be a subsequence of A
such that

Then

lim a,(yI"kl) = at,
k -x

"

j= 0, I, ..., n.

"

if (wR)'(x)=O.

locally uniformly in R. Let Q*(x) :=L7~oatxl. Note that for any p"E~,

with IIHp,,11 ~ I,

So, by letting k --+ 00,

(wQ*)' (Yo);" (wp,,)' (Yo)·

With the notation llfll [a.h] := SUPXE [a.h1If(x)1 and the fact that there exist
finite real numbers a" and btl such that

for all P"Ef!lJ" (cf. [7]), we find

IlwQ*11 = IlwQ*11 [a.,h.] = }~mx Ilw(x) Q,,(x, yl"kl)11 [a•. h.] = 1.

Hence Q* is a solution of (PI'o)' By the uniqueness, Q*(x) = Q,,(x, Yo)
and it follows that the limit lim,~vOaj(Y) exists and equals aj(yo)
(j = 0, I, ..., n). I

3. PROOF OF THEOREM 1

Let N,,(Y), R(x), and Rdx) have the same meaning as in Section 2
(cf. formulas (3), (10), and (11). Note that

I (wR)(x)
(wRd(x)=-( ')2

X-rk
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Thus, if we use 00 < 01 < ... < 0,,+ 1 to denote all the zeros of (l1R)', then
the zeros of (wR)' and that of (wRd' (or (wR,,+ 1)') are interlacing, so

'Xj + I <Oj<f3j+l, j=O,l, ... ,n+l,

where 'Xj+I=(jIl and f3j+I=(:'~~II, j=O, I, ... ,n+l, are defined as in
Lemma 7.

Similarly, we can also verify the following:

j = I, 2, ..., n + 1. ( 17)

From this point on, we shaH take ~1/(x) = It'2(X) = e \"2

We need the following additional lemmas for the proof of Theorem 1.

LEMMA 12. For j = 1, 2, ... , n + 2, in each interval (rJ. j' f3j)' function N" (y)
has a unique local maximum point at 8j _ 1 •

Proof Let y E (rJ. j , f3J From Lemma 7 and its proof, Qn =
(sgn(w2 Tn)' (y)) Tw So,

8 2 sgn(w 2 (T,,)' (y)
--8 (w 2(x)Q,,(x, y))lx~y = II' T (., )11 (w 2R)(y),

X 11 2 n ,112

by using the definition of R and comparing the leading coefficients on both
sides. But the left hand side equals - N" (y) < 0 (cr. the remark after the
proof of Lemma 3). So the right hand side does not change sign for
YE(rJ.j ,f3j)' Thus (1I'2Tn)'(Y) has the same sign for YE('X j ,f3j)' so
Qn(x, y) == Tn(x) or Qn(x, y) == - Tn(x) for such Y (Qn is independent of y
in this case!). Assume Qn == Tn. Then

• , 2(1I'2 R )(y)
Nn(y) = (11'2 Tn) (y) = -1111'2 T

n
(., 11'2)11 > O. (18 )

So w 2 R(y) <0 for YE(rJ. j ,f3j ). It then follows easily that W2R has a unique
minimum point at 0;-1' so Nn(y) has a unique maximum point at 0;-1'

The case when Qn == - Tn can be handled similarly. I .
Next, we examine the behavior of NnC",) when YE(f3j ,'Xj +d,

j=I,2, ...,n+1. Recall that (;s are all the zeros of (w 2 R*)' with R*
defined in (16).

LEMMA 13. The function Nn(y) is decreasing in (f3I , (j) and increasing in
((j' rJ.j+ d, j= 1,2, ..., n + 1.
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Proof Let yE({3j,r:x j+tl. By Lemmas 5, 6, and 7, r(y)=n, 2)';+1<0
(i = I, 2, ..., n - 1) in (4), and

n-l ,,:;;ilQII :=the degree of QII(-' y)~n.

If ilQII = n - I, then QII = TII _ I or - TII _ 1 by the maximal equioscillation
property; and this happens only when y = ~j by Lemma 10.

Now assume ilQII = n, then there exist

t 1 < t 2 < ... < til and

(the zeros of (w 2 Qlln such that the following relations hold:

and

(W2QII)(tJ=(-lrs (s= ±1), i= 1,2, ..., n

a
ax (w2(x) QII(X, y))lx~I=O.

Set R(x) := n;'~ I (x - tJ, and let all be the leading coefficient of Qn' Then
an*Oand

So

But by (4), (w2R)' (y)=O since R(tJ=O, i= 1, 2, ..., n, thus

~(, Q ( '))1. =(a/ax)(w2(x)QII(x,Y))lx~Y-J-0
'" 2 1\ 2 II X, J ,~ '" -r- ,
vX . y- t

(19 )

for y E ({3j, IXj + tl\ gj}, j = 1,2, ..., n + I. Therefore, y is not a local
extremum point of (%x)(w2(x) QII(X, y)) as a function of x.

By Lemma 8, QII(X, {3j) = sgn(w2 Til)' ({3J Tn(x), so

Nil ({3j) = sgn(w2 Til)' ({3j)(w2Tn)' ({3)

= _ 2 sgn(w 2 Til)' ({3j)(W2 R )({3j) > 0,
IIw2 Til ( ., w2)11
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where the second equality depends on (18). Now by (17) and the fact the
w2 R is monotone between 0;- I and 0;, we conclude that

so

Hence

a2

- ax2 (»'2(X) QII(X, Pt»IX~{il

= 2 sgn(»'2 Til)' (P;)(w 2 R)' ({J;) > O.
IIw2 Til ( ., w2 )11

Now, by Lemma 11, for Y> Pi and y close enough to Pi'

a2

--a2 (»'2(X) Qn(.\"' y))lx~ ,>0.
X .

(20)

But in view of (19), this implies that (20) holds for all yE (P;, ~;). Now the
continuity of - (a 2;aX2)(w2(x) QII(X, y» in (x, y) implies that, for every
y E (pj ' ~), there is 1> := l>(y) such that

a2

- ax2 (w 2(x) QJ\", y*»lx~x.> 0

whenever Ix* - yl < 1> and Iy* - yl < b. Thus, if Yl < Y2 and Yl, Y2 E

(y-b, y+b),

a
N n(Y2) = ax (W 2(X) Qn(X, Y2)) Ix~ Y2

a
<-a (W 2(x) Qn(X, .Jl2))lx~ VIX .

Hence N n is decreasing in (y-b, y+1». Consequently, N n is decreasing in
(pj ' U, j= 1, 2, ..., n + 1.

Similarly, we can show that Nil is increasing in (~;, PH 1)'
j = 1, 2, ..., n + 1. I

640n5i2·2
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Proof of Theorem 1. Combining Lemmas 12 and 13, we have

N,,(y) < II(w2 T"n
n + 2

for x E U «(X" /3,).
i'~ 1

Together with Lemmas 5 and 7, it then follows that

for all P" E ,JJ!" unless

P" = +T
11»'2Pnll -".

This completes our proof of Theorem I. I

4. REMARKS

(I) By a linear transformation, one can easily prove

COROLLARY 14. For real numhers a> 0, h, and c, equality (I) is true for
the weight

»'H (x) = e

(II) From [I], we know that

(ax2 + hx + 1.')

An 1/2:::; C'" (n):::; Bn 1/2,

where A > 0 and B> 0 are absolute constants. So using Theorem I we get
the following estimate of (W 2T,,)':

COROLLARY 15. There are ahsolute constants A > 0 and B > 0 such that

The asymptotics of Tn (Z,W2) in C\[-I, I] is obtained in [5] (more
general weights are considered there). Hence, in view of Corollary 15, it is
desirable to ask: what is the asymptotics of II(W2 Tnn?

(III) If (w 2p,,)' is replaced by W2P~ in (2), then it is not clear if
Chebyshev polynomial Tn (·, 11'2) will still give us the best constant. Our
method of proof of Theorem I cannot be directly applied to solve this
problem.
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